Liu and colleagues describe the first asymmetric radical oxysulfonylation of both terminal and internal alkenes in \(\beta,\gamma \)-unsaturated ketoximes using their developed copper(I)-cinchona alkaloid-derived sulfonamide ligand catalyst. Experimental and computational studies collectively suggest a Cu\(^{II}\)-Cu\(^{I}\) catalytic cycle involving fast and reversible sulfonyl radical addition and subsequent rate- and stereo-determining C–O bond formation, namely, a scenario under Curtin-Hammett kinetic control. The method provides a robust platform for the synthesis of a diverse array of valuable chiral sulfonyl-containing building blocks.
Diastereo- and Enantioselective Catalytic Radical Oxysulfonylation of Alkenes in β,γ-Unsaturated Ketoximes

Xi-Tao Li, Ling Lv, Ting Wang, Qiang-Shuai Gu, Guo-Xing Xu, Zhong-Liang Li, Liu Ye, Xinhao Zhang, Gui-Juan Cheng, Xin-Yuan Liu

SUMMARY
The asymmetric radical-initiated difunctionalization of internal alkenes, which creates two vicinal stereocenters, has been a significant synthetic challenge despite the tremendous progress achieved for terminal alkenes. This is attributable to the common stepwise mechanism that involves an initial free radical addition to the alkene in a nonstereoselective fashion. We report here the first asymmetric radical 1,2-oxysulfonylation of both terminal and internal aryl alkenes in β,γ-unsaturated ketoximes in the presence of copper(I)-cinchona alkaloid-based sulfonamide catalyst. The experimental and computational mechanistic studies collectively support a CuII-CuI mechanism featuring fast, reversible addition of sulfonyl radicals to alkenes and subsequent rate- and stereo-determining C–O bond formation, namely, a scenario under Curtin-Hammett kinetic control. The method provides a robust platform for collective synthesis of a diverse array of valuable chiral sulfonyl-containing building blocks.

INTRODUCTION
Transition-metal-catalyzed asymmetric difunctionalization of alkenes enables the expedited construction of two vicinal carbon–carbon and/or carbon–heteroatom chemical bonds and stereogenic centers from readily available alkene starting materials. Thus, it has been established as a powerful technique for the sustainable preparation of chiral complex organic molecules. Recently, very impressive advances have been achieved in the development of Cu-catalyzed radical-initiated asymmetric alkene difunctionalization. Such reactions usually involve the intermolecular addition of free carbon- or heteroatom-centered radicals to alkenes followed by asymmetric functionalization of the thus-generated alkyl radical intermediates with chiral metal species, a significant strategy pioneered by Fu, Reisman, Buchwald, Liu, and others (Scheme 1A). In this aspect, Buchwald and Liu independently reported the use of a copper-chiral bis(oxazoline) system to elegantly realize a series of enantioselective alkene difunctionalization reactions. At the same time, our group developed a copper-chiral anionic ligand system for several types of asymmetric transformations. These methods, however, are generally limited to terminal alkenes, while the use of internal olefins for concomitant generation of two vicinal stereocenters across the C=C double bonds has proved very problematic. The difficulty lies on the stereocontrol in the first free radical (R•) addition step and nonstereoselective formation of A and B has been explicitly demonstrated in previous works (Scheme 1A, step 1). Thus, a conceptually different strategy is urgently needed to achieve catalytic asymmetric.
radical-initiated difunctionalization of internal alkenes with effective control of both the diastereoselectivity and the enantioselectivity.

Sulfone moieties are prevalent in many biologically active molecules and pharmaceutical agents. Although great efforts have been devoted to establishing various racemic radical 1,2-sulfonyl functionalization reactions of alkenes, the development of corresponding catalytic asymmetric methods for access to chiral sulfones has so far remained elusive. Our group has recently developed a copper-cinchona alkaloid-based sulfonamide catalyst system for radical-initiated 1,2-oxytri-fluoromethylation of alkenes under mild conditions. Thus, we wondered whether such a copper catalyst system would meet the aforementioned challenges. The addition of sulfonyl radicals (RSO2•) to alkenes is known to be fast and reversible. Accordingly, we hypothesized that a scenario under Curtin-Hammett kinetic control might be achieved via a rapid equilibrium between the initial addition diastereomers C and D (Scheme 1B). Subsequent rate-determining asymmetric functionalization of these alkyl radicals might deliver the desirable product (e.g., P0) with excellent control of both enantioselectivity and diastereoselectivity. The successful implementation of this strategy will open a new door for precise stereocontrol on the challenging asymmetric radical-initiated difunctionalization of internal alkenes.

The aryl and alkyl sulfone groups, thanks to their unique physicochemical properties, are a kind of important pharmacophores in structure-based drug design and thus, are of great importance in the development of drugs and agrochemicals. In addition, enantiomerically enriched β-hydroxysulfone represents a privileged scaffold found in many biologically relevant molecules, such as the anticancer drug bicalutamide and antifungal agents SSY726 and SCH42427. Nonetheless, their asymmetric construction remains a significant challenge. Herein, we describe our efforts toward the development of a general and efficient asymmetric radical oxysulfonylation of both terminal and internal alkenes using a Cu(I)-cinchona alkaloid-based sulfonamide catalyst. The reaction exhibits a broad scope across a range of alkenes and diverse (hetero)aryl- and alkyl-substituted sulfonyl chlorides (Scheme 1C). Experimental and computational studies have been performed to suggest a stereodiscrimination process under Curtin-Hammett kinetic control.

RESULTS AND DISCUSSION
Optimization Study
We began our investigation by reacting β,γ-unsaturated ketoxime 1a with p-toluenesulfonyl chloride (TsCl) 2a in the presence of CuOAc and different cinchona alkaloid-based sulfonamide ligands (Table 1). In addition, Ag2CO3 was also added to quench the in situ generated HCl. A series of quinine-, cinchonidine-, and cinchonine-derived sulfonamide ligands readily provided the desired sulfonyl-containing isoxazoline 3aa in good yields with moderate enantioselectivity (entries 1–8), and sulfonamide L1 performed the best in terms of both yield and enantioselectivity (entry 1, 82% yield, 76:24 er). Subsequent screening of different Cu salts (entries 10–13) and solvents (entries 14–15) as well as an additive (entry 16) improved the er to 82:18 using Cu(OAc)2 in the presence of 4 Å molecular sieves with CHCl3 as the solvent (entry 16). Lowering the reaction temperature to −10 °C obviously enhanced the enantioselectivity (entry 17). Further increasing the amount of Ag2CO3 and adding proton sponge slightly increased the er to 95:5, presumably by effectively and timely quenching the in situ generated acid during the reaction (entry 18).
Substrate Scope with Terminal Alkenes

With the optimal conditions being established, we next investigated the substrate scope of the alkenyl ketoximes (Figure 1A). A variety of R1 groups containing electron-neutral (H), -donating (Me, Et, tBu, and OMe) or -withdrawing (F, Br, I, and CF3) substituents at the para- or meta-positions of the phenyl ring were compatible with the reaction, giving 3aa–3ka in 54%–85% yields with 93:7–96:4 er. In addition, a bicyclic naphthyl and a heterocyclic thiophenyl R1 groups were also tolerated to deliver 3la and 3ma, respectively, in good yields and excellent stereoselectivities.

In the following study, we switched our attention to evaluate the scope of sulfonyl chlorides. We were pleased to observe that a series of arylsulfonyl chlorides bearing
substituents ranging from electron-rich (Et, tBu, OMe, and Ph) to electron-deficient groups (Br, F, and CF₃) and a polyarene naphthalene-derived sulfonyl chloride delivered the corresponding products 3ab–3ak in 53%–84% yields with 90:10–96:4 er. The absolute configuration of 3aj has been determined to be S by X-ray structural analysis (Figure S1). The heterocyclic thiophene-derived sulfonyl chloride also provided the product 3al in 75% yield with a 95:5 er. The substrate scope is not limited to (hetero)aryl-substituted sulfonyl chlorides. For example, a series of acyclic alkyl sulfonyl chlorides, including simple unfunctionalized linear and branched alkyl

<table>
<thead>
<tr>
<th>Entry</th>
<th>[Cu]</th>
<th>Ligand</th>
<th>Solvent</th>
<th>Yield (%)</th>
<th>Er</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CuOAc</td>
<td>L1</td>
<td>DCM</td>
<td>82</td>
<td>76.24</td>
</tr>
<tr>
<td>2</td>
<td>CuOAc</td>
<td>L2</td>
<td>DCM</td>
<td>77</td>
<td>61.39</td>
</tr>
<tr>
<td>3</td>
<td>CuOAc</td>
<td>L3</td>
<td>DCM</td>
<td>78</td>
<td>74.26</td>
</tr>
<tr>
<td>4</td>
<td>CuOAc</td>
<td>L4</td>
<td>DCM</td>
<td>79</td>
<td>74.26</td>
</tr>
<tr>
<td>5</td>
<td>CuOAc</td>
<td>L5</td>
<td>DCM</td>
<td>73</td>
<td>75.25</td>
</tr>
<tr>
<td>6</td>
<td>CuOAc</td>
<td>L6</td>
<td>DCM</td>
<td>79</td>
<td>24.76</td>
</tr>
<tr>
<td>7</td>
<td>CuOAc</td>
<td>L7</td>
<td>DCM</td>
<td>80</td>
<td>28.72</td>
</tr>
<tr>
<td>8</td>
<td>CuOAc</td>
<td>L8</td>
<td>DCM</td>
<td>68</td>
<td>33.67</td>
</tr>
<tr>
<td>9d</td>
<td>–</td>
<td>L1</td>
<td>DCM</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>10</td>
<td>CuBr</td>
<td>L1</td>
<td>DCM</td>
<td>60</td>
<td>60.40</td>
</tr>
<tr>
<td>11</td>
<td>CuI</td>
<td>L1</td>
<td>DCM</td>
<td>66</td>
<td>63.37</td>
</tr>
<tr>
<td>12</td>
<td>CuTc</td>
<td>L1</td>
<td>DCM</td>
<td>82</td>
<td>74.26</td>
</tr>
<tr>
<td>13</td>
<td>Cu(OAc)₂</td>
<td>L1</td>
<td>DCM</td>
<td>78</td>
<td>77.23</td>
</tr>
<tr>
<td>14</td>
<td>Cu(OAc)₂</td>
<td>L1</td>
<td>EtOAc</td>
<td>76</td>
<td>68.32</td>
</tr>
<tr>
<td>15</td>
<td>Cu(OAc)₂</td>
<td>L1</td>
<td>CHCl₃</td>
<td>80</td>
<td>78.22</td>
</tr>
<tr>
<td>16e</td>
<td>Cu(OAc)₂</td>
<td>L1</td>
<td>CHCl₃</td>
<td>80</td>
<td>82.18</td>
</tr>
<tr>
<td>17e/7</td>
<td>Cu(OAc)₂</td>
<td>L1</td>
<td>CHCl₃</td>
<td>81</td>
<td>94.6</td>
</tr>
<tr>
<td>18e/9</td>
<td>Cu(OAc)₂</td>
<td>L1</td>
<td>CHCl₃</td>
<td>79</td>
<td>95.5</td>
</tr>
</tbody>
</table>

*Reaction conditions: 1a (0.05 mmol), 2a (0.055 mmol), [Cu] (0.005 mmol), ligand (0.0075 mmol), and Ag₂CO₃ (0.03 mmol) in solvent (1 mL) under argon. *bYield based on 1H NMR analysis of the crude product using CH₂Br₂ as an internal standard. cDetermined by chiral HPLC analysis. dNo copper. e4 Å molecular sieves (MS) (50 mg) were added. fRun at –10°C for 96 h. gAg₂CO₃ (2.0 equiv), proton sponge (0.5 equiv), and CHCl₃ (2 mL) were used.
Please cite this article in press as: Li et al., Diastereo- and Enantioselective Catalytic Radical Oxysulfonylation of Alkenes in β,γ-Unsaturated Ketoximes, Chem (2020), https://doi.org/10.1016/j.chempr.2020.03.024
groups as well as a halogenated one, all worked well to give 3am–3ap with good results. In addition, different cyclic and O- or N-containing heterocyclic alkyl sulfonyl chlorides were all well accommodated in this process to deliver 3aq–3at in 64%–95% yield with 92:8–94:6 er. Notably, with this protocol, we were able to incorporate cyclopropane ring (3au and 3av), a versatile fragment frequently used in drug development, into the chiral sulfonyl-containing isoxazolines. Nonetheless, benzyl and allyl sulfonyl chlorides and o-toluenesulfonyl chloride were found to be unsuitable for the reaction, possibly due to stability or steric issues associated with the corresponding sulfonyl radicals, respectively. As for the utility of this methodology, the isoxazoline unit in the products could be easily cleaved to afford amino alcohols (Figure 1B). For example, treatment of 3aa under mild reductive conditions afforded 4 in excellent yield. It features three important functional groups, including amino, hydroxy, and sulfonyl moieties, and a conserved tertiary stereocenter, which are prevalent in numerous drugs and bioactive molecules.

Investigation on Internal Alkenes

With regard to the challenging internal alkenes, we initially conducted time-course experiments on internal alkenyl ketoximes (E)- and (Z)-5a using L7 (see Table 1 for its structure) as the ligand under the otherwise standard conditions (Figure 2; Tables S1 and S2). Obvious E-Z isomerization occurred as the reactions started, indicating fast, reversible addition of sulfonyl radicals to alkenes as reported in literature. Most importantly, both (E)- and (Z)-5a afforded (5R,2'S)-6aa with the same absolute configuration as the major product. The results strongly support the involvement of the same rate- and stereo-determining C–O bond formation step for reactions on both (E)- and (Z)-5a. And thus, the envisioned Curtin-Hammett kinetic control was very likely operating under our reaction conditions.

This proof-of-principle result encouraged us to carry out further optimization of reaction conditions with (E)-5a as the model substrate (Table 2). A screening of a series of cinchona alkaloid-derived sulfonamide ligands (entries 1–8) revealed L8 (see Table 1 for structures) as the optimal one. The corresponding product (5R,2'S)-6aa with two vicinal stereocenters was obtained in good yield with good stereoselectivity (entries 8 and 9). Interestingly, the use of a 1:1 mixture of (E)- and (Z)-5a as the substrate gave similar results to that with one pure isomer (entry 10). In addition, the reaction on internal alkenes also well tolerated a range of different substituents on the ketoxime, the alkene, and the sulfonyl moieties. The desired products 6ab, 6ac, and 6ba–6ia were afforded in 57%–73% yields with good stereoselectivity (Scheme 2). The absolute configuration of (5R,2'S)-6aa has been determined by X-ray crystallographic analysis (Figure S2), and those of other products were assigned by analogy. Furthermore, cyclic internal alkenes were also viable substrates for the reaction. A series of chiral spiro-heterocycles 6ja–6la with different skeletons (such as 5–5 and 5–6 spiro rings) and functionalities (such as carbocycles and a N-containing heterocycle) were efficiently constructed in good yields with excellent diastereoselectivities (> 20:1 dr) and good enantioselectivities (up to 92:8 er) (Scheme 2). The absolute configuration of 6ja has been determined by X-ray crystallographic analysis (Figure S3), and those of other products were assigned by analogy.
Mechanistic Study

Control experiments were conducted to gain further insights into the reaction mechanism. First, the addition of radical inhibitor 2,2,6,6-tetramethyl-1-piperidinyl-oxy (TEMPO) significantly inhibited the desired reaction for the formation of 3aa (Scheme 3A). Thus, our reaction likely involves a radical mechanism. Interestingly, the other product, 7, was formed in 41% yield, presumably via the generation of an iminoxyl radical followed by 5-exo-trig cyclization and trap by TEMPO. Such a mechanism has been consistently invoked for the formation of similar TEMPO-trapped products from β,γ-unsaturated ketoximes in literature. Notably, 7 is racemic and thus, the presumed iminoxyl radical is likely not a common intermediate toward the formation of 3aa and 7. Radical clock probe 8 did not afford any desired oxysulfonylation product under the standard conditions. Instead, it provided 9 in 10% yield, possibly via tandem radical addition, cyclopropane ring opening, and hydroalkoxylation (Scheme 3B). All of these observations suggest that sulfonyl radicals are likely generated in situ, which upon further addition to alkenes and subsequent C–O bond formation, give rise to the desired oxysulfonylation products.

Computational Study

In order to gain more insight into the reaction mechanism, we resorted to theoretical calculations. Two plausible reaction mechanisms, i.e., Cu II-CuIII-CuI and Cu II-CuI mechanisms 22,23,85–92 (paths A and B in Figure 3 and Figure S4) were proposed based on the experimental observations and calculated with the density functional theory (DFT) method. Both pathways start with the deprotonation of β,γ-unsaturated
ketoxime 1a by CuOAc-L1 complex, affording the Cu-L1-alkene intermediate (INT1). Subsequently, the addition of sulfonyl radical to the alkene via triplet \(tTSA1- \) or \(tTSB1- \) generates the \(\alpha \)-sulfonyl-alkyl radical (\(t \)INTA1- or \(t \)INTB1-). This radical may attach to the Cu II center to form a Cu III complex, which undergoes further reductive elimination to deliver the oxysulfonylation product and the Cu-L1 catalyst (path A). Alternatively, it may directly attack the oxygen atom on the Cu II–O bond to afford the product and Cu-L1 (path B). The attempts to locate the transition states of the intramolecular addition of \(\alpha \)-sulfonyl-alkyl radical to the Cu II center or the O atom were unsuccessful. Instead, the minimum energy crossing points (MECPs), \(93–96 \) MECP_A- and MECP_B-, which connect the triplet \(\alpha \)-sulfonyl-alkyl radical and singlet Cu III complex (\(s \)INTA2-\(s \), path A) or Cu \(s \) species (\(s \)INTB2-\(s \), path B), respectively, were located and calculated to be rate-determining. The latter (MECP_B-) has a lower electronic energy by 9.0 kcal/mol, which suggests that the Cu II-CuI mechanism (path B) is likely more favorable.

Computational results suggested that the forward and backward reaction barriers for the radical addition step are indeed very low (path B: 0.1 kcal/mol, INT1 \(\rightarrow \) TS1; 4.1 kcal/mol, INT1 \(\rightarrow \) TS1), which, in agreement with our experimental observations, indicates a fast and reversible process. As a result, the C–O bond formation step should determine the enantioselectivity, which we analyzed next (Figure 4A). The located MECP_B- (leading to S product) has a lower electronic energy than MECP_B- (leading to R product) by 4.3 kcal/mol, which is consistent with the experimentally observed S-enantioselectivity with L1 ligand (see Table 1 for its structure). A favorable hydrogen bonding interaction between the ligand and the substrate was identified in MECP_B-. Meanwhile, an unfavorable electrostatic repulsion between oxygen atoms of the sulfonyamide ligand...
Scheme 2. Substrate Scope for Asymmetric Oxysulfonylation of Internal Alkenes

Reactions were conducted on 0.2 mmol scale, isolated yields were given, and er values were determined by HPLC analysis.

\(^a\) L6 (see Table 1 for its structure) used as the ligand.

\(^b\) L8 (see Table 1 for its structure) used as the ligand.

\(^c\) L1 (see Table 1 for its structure) used as the ligand at RT.
and the sulfonyl radical was identified in MECP_B-R by the analysis of electrostatic potential (ESP) surface (Figure 4B). Computational results suggest that the enantioselectivity of this oxysulfonylation reaction on terminal alkenes originates from the hydrogen bonding interaction and electrostatic repulsion between the substrate and the ligand.

Scheme 3. Mechanistic Study

Figure 3. Calculated Catalytic Cycles for the Copper-Catalyzed Asymmetric 1,2-Oxysulfonylation of Terminal Alkenes

Calculations were done on 1a with PhSO₂Cl as the radical precursor and L1 (see Table 1 for its structure) as the ligand, respectively. Relative free energies (electronic energies) in kcal/mol are calculated with the DFT method in CHCl₃ solvent. The superscripts s and t refer to the singlet and triplet states, respectively.
On the basis of the above experimental and computational studies, a working mechanism for the asymmetric radical oxysulfonylation reaction was tentatively proposed, shown in Figure 5. The \textit{in situ} formed bis-chelating Cu I complex A with a strong reducing capability first undergoes single-electron transfer with sulfonyl chloride to afford Cu II complex B and sulfonyl radical. Next, the Cu II complex B reacts with substrate 1 or 5 via deprotonation, leading to intermediate C. This intermediate is then reversibly attacked by sulfonyl radical, giving rise to alkyl radical D. Its subsequent intramolecular radical substitution reaction delivers Cu I-product complex E, which finally dissociates to give product 3 or 6 and regenerate the Cu I complex A. The stoichiometric amounts of acid and chloride side products are scavenged by Ag$_2$CO$_3$.

Figure 4. Stereoselectivity Analysis of Reactions on Terminal Alkenes
(A) 3D structures and relative electronic energies (kcal/mol) of MECP$_B$-S and MECP$_B$-R.
(B) The electrostatic potential surface of MECP$_B$-R.

Figure 5. Mechanistic Proposal
Catalytic cycle for asymmetric radical 1,2-oxysulfonylation of both terminal and internal alkenes.
Conclusions
In summary, we have developed a general and efficient asymmetric radical oxysulfonfylation of alkenes in β,γ-unsaturated ketoximes using copper(I)-cinchona alkaloid-based sulfonamide complex as a strong single-electron-reducing catalyst. This method exhibited a broad scope across a range of both terminal and internal alkenes as well as diverse (hetero)aryl- or alkyl-substituted sulfonfyl chlorides under very mild conditions. Experimental and computational studies suggested a likely CuII-CuI catalytic cycle with efficient stereodiscrimination under Curtin-Hammett kinetic control. The sulfonfyl-containing isoxazolines could undergo further transformations to provide valuable building blocks prevalent in numerous bioactive molecules. We anticipate that the present strategy would open a new door for the precise control of diastereo- and enantioselectivities in the challenging asymmetric radical-initiated difunctionalization of internal alkenes.

EXPERIMENTAL PROCEDURES
Full experimental procedures are provided in the Supplemental Information.

DATA AND CODE AVAILABILITY
The data for the X-ray crystallographic structures of 3aj, (5R,2'S)-6aa, and 6ja have been deposited in the Cambridge Crystallographic Data Center under accession numbers CCDC: 1957456, 1957457, and 1957458 and can be obtained free of charge from www.ccdc.cam.ac.uk/getstructures.

SUPPLEMENTAL INFORMATION
Supplemental Information can be found online at https://doi.org/10.1016/j.chempr.2020.03.024.

ACKNOWLEDGMENTS
This work is dedicated to the heroic city of Wuhan. Financial support from the National Natural Science Foundation of China (nos. 21722203, 21831002, 21801120, 21803047, and 21933004), Shenzhen Special Funds (no. JCYJ20170412152435366), Guangdong Provincial Key Laboratory of Catalysis (No. 2020B121201002), Shenzhen Nobel Prize Scientists Laboratory Project (no. C17783101), SUSTech Special Fund for the Construction of High-Level Universities (no. G02216302), the China Postdoctoral Science Foundation (T.W., no. 2019M650147), Warshel Institute for Computational Biology funding (G.-J.C. and T.W.) from Shenzhen City and Longgang District, and the Shenzhen San-Ming Project (no. SZSM201809085) are greatly appreciated.

AUTHOR CONTRIBUTIONS
X.-T.L. performed the condition optimization, investigated the scope of the substrates, and conducted the experimental mechanistic studies. L.L., G.-X.X., Z.-L.L., and L.Y. synthesized the alkene substrates and performed the application. T.W. performed the computational study of the mechanism. Q.-S.G. participated in the design and discussion of the mechanistic experiments. G.-J.C. and X.Z. directed the computational study. X.-Y.L. directed the project and wrote the manuscript with input from all authors. All authors analyzed the results and commented on the manuscript.
REFERENCES

80. DFT calculation methods and details are given in the Supplemental Information.
