Organocatalytic Asymmetric Hydroamination of Allenes and Dienes

Significance: Liu and co-workers report an intramolecular Brønsted acid catalyzed dynamic kinetic asymmetric hydroamination (DyKAH) of racemic allenes and an asymmetric hydroamination of non-activated dienes. In all cases, geminal disubstituted substrates with tethered thiourea moieties were used to give the corresponding pyrrolidines with both high diastereo- and enantioselectivities.

Comment: Intramolecular olefin hydroaminations are highly appreciated and desirable transformations that lead to valuable heterocycles. The presented CPA-catalyzed variant is limited to substrates activated by the Thorpe–Ingold effect and requires a directing thiourea group, undermining its general applicability. Further mechanistic studies should be conducted to confirm the proposed cationic nature of the reaction intermediate.

SYNFACTS Contributors: Benjamin List, David Díaz-Oviedo

Synfacts 2019, 15(06), 0662 Published online: 20.05.2019 DOI: 10.1055/s-0037-1611612; Reg-No.: B04119SF

2019 © Georg Thieme Verlag Stuttgart · New York